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We present a continuous time model of the dynamics of two species competing for
a single limiting resource in the presence of a substance that inhibits the growth of
one of the species. Resource and inhibitor are both derived from external sources.
These inputs, and all other model parameters, are assumed to be constant in space
and time. There exist conditions that permit the stable coexistence of the competitors,
provided that (i) the sensitive species is more efficient in exploiting the limiting
resource, and (ii) the resistant species removes the inhibitor from the environment.
There exists a subset of these conditions wherein the sensitive species can become
established if and only if the resistant species is already established. If the resistant
species does not remove the inhibitor from the environment, then coexistence of
sensitive and resistant species is structurally unstable. If the resiztant species produces
the inhibitor, then coexistence is dynamically unstable. We review several studies
of bacterial competition in the presence of antibiotics that support these conclusions.

Introduction

According to an outmoded version of the competitive exclusion principle, the number
of species that can coexist indefinitely cannot exceed the number of distinct resources.
Fredrickson & Stephanopotous (1981) and Abrams (1983) provide recent reviews
of demonstrable exceptions to this principle. For example, temporal variability in
the supply of a single resource may allow two species to coexist, although not at
constant population densities (Stewart & Levin, 1973; Levins, 1979; Armstrong &
McGehee, 1980; Tilman, 1982). Also, if some species are limited by factors other
than competition, then the number of species that can stably coexist may exceed
the number of resources. The most familiar situation is predator or parasite mediated
coexistence of two prey or host species competing for a single resource, which can
occur if the inferior competitor is resistant to exploitation (Levin, 1970; Levin et
al,, 1977). Moreover, stable coexistence of two species on a single resource may
arise via interference competition, provided that each species inhibits its own
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population growth more strongly than that of the other species (DeFreitas &
Fredrickson, 1978; Schoener, 1978; Vance, 1985). Types of interference mechanisms
include agonistic behaviors and the production of inhibitory substances.

Little attention has been paid to inhibitory substances like pesticides that are
derived from external sources, and are not produced in situ by the competing species.
In this paper, we examine the conditions under which an externally derived inhibitor
can promote the stable coexistence of two species competing for a single resource
in a homogeneous environment. We also review observations from experiments with
bacteria and antibiotics that support the conclusions drawn from our model.

The Model

Our model assumes an open habitat, such as a chemostat for the continuous
culture of microorganisms (Kubitschek, 1970). Two species compete for a single
limiting resource in the presence of an inhibitor to which one species is sensitive
and the other resistant. Let C and X be the concentrations of the resource and the
inhibitor, respectively. Let S and R be the respective densities of the sensitive and
resistant species.

Resource and inhibitor enter the habitat at concentrations C; and X, respectively,
via a constant flow rate w. Sensitive and resistant species are washed out of the
habitat at this same rate, as are unused resource and inhibitor. Both species have
per capita rates of resource uptake and population growth that are hyperbolic
functions of resource concentration. When resource is superabundant, growth occurs
at a maximum rate ¢. At resource concentration K, growth occurs at half this
maximum. Each production of a new individual requires & units of resource conver-
sion. Subscripts S and R denote these parameters for sensitive and resistant species,
respectively. The rates of resource uptake and growth of the sensitive species are
also negative exponential functions of inhibitor concentration. The degree of sensitiv-
ity is determined by the coefficient A. Where specifically indicated, the resistant
species removes the inhibitor from the environment at a per capita rate that is a
hyperbolic function of inhibitor concentration. The maximum rate at which this
detoxification occurs is 8, and L is the inhibitor concentration at which the rate is
half maximum.

The following equations summarize the dynamics of resource, sensitive species,
resistant species, and inhibitor, respectively
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where the dot notation indicates differentiation with respect to time.
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Although we have chosen to specify the functions describing resource utilization,
population growth, growth inhibition, and inhibitor detoxification, it will be shown
that the general theoretical conclusions that follow are not dependent on the specific
form of these equations.

COEXISTENCE AND STABILITY WITHOUT DETOXIFICATION

Let us first consider the conditions for the equilibrium coexistence of sensitive
and resistant species when there is no detoxification of the inhibitor. Inspection of
eqns (2) & (3) reveals that both can be set to zero if and only if the per capita
growth rates of the sensitive and resistant species are identical, and equal to the
rate of loss due to washout. One obtains the equilibrium concentration of resource
by setting eqn (3) equal to zero
wKg
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Note that this same equilibrium concentration of resource would result even in the
absence of a sensitive population. One obtains the equilibrium concentration of
inhibitor by setting eqn (2) equal to zero
N 1 wC+ wKg
X=——log \——=—1.
A ¢sC
However, if there is no detoxification of the inhibitor by the resistant populatioq,

then from eqn (4) the equilibrium concentration of inhibitor must also be exactly
equal to its influx concentration

(6a)

X =X, (6b)

It is also possible to obtain a measure of the combined equilibrium densities of
the sensitive and resistant populations by setting eqn (1) to zero

eS§+eRRA=C0—é N

where each density has been weighted by its resource conversion equivalent. It is
not possible, however, to specify the equilibrium densities for each species.

If the influx concentration of inhibitor exceeds the critical concentration given
by eqn (6a), then the sensitive species is excluded by the resistant species. That is,
the resistant population drives the resource concentration below that level which
permits the net replacement of the sensitive population. On the other hand, if the
influx concentration of inhibitor is less than this critical concentration, then the
sensitive species excludes the resistant species by driving the resource concentration
too low. An alternative means for obtaining the critical influx concentration of
inhibitor that permits coexistence would therefore be to equalize the equilibrium
resource concentrations that would obtain for each species in the absence of the other.

The preceding argument is identical to that of Hansen & Hubell (1980), and
parallels the general result of mechanistic chemostat models wherein the winning
competitor is the one with the lowest “break-even’’ concentration of limiting resource
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(Stewart & Levin, 1973; Hsu et al, 1977; Tilman, 1982; Waltman, 1983).‘ This
argument also implies that the sensitive species must be competitively superior to
the resistant species in the absence of inhibitor, if the species are to coexist in the
presence of the inhibitor. That is, removal of the inhibitor reduces the resource
concentration required for net replacement of the sensitive species, but not of the
resistant species.

The influx concentrations of resource and inhibitor that permit establishment and
coexistence are shown in Fig. 1(a) for a particular set of parameters. Neither species

{b) .~

F1G. 1. Outcomes of competition between sensitive (S) and resistant (R) species. Cﬁ and X, are influx
concentrations of resource and inhibitor, respectively. I—neither S nor R can establish. Il—only_ S can
establish. [Il—only R can establish. [V—either § or R can establish alone; S excludes R V—either §
or R can establish alone; R excludes S. VI—either S or R can establish; S and R can coexist. VlI-_—onIy
R can establish alone; S and R can coexist. (a) Without detoxification of the inhibitor by_;he resistant
species (8 =0). (b) With detoxification of the inhibitor by the resistant species (6=1%107%). (a) & (b)
@w=02; Yys=Yyp =07, es=€g=1X 107% Ks=5; Kg =10, A =1; L=10.

can become established in the region designated I, where the resource conccntratign
is too low and/or the inhibitor concentration too high. Only the sensitive species
can establish in reg"ton 11, while only the resistant species in region II1. Regions IV
and V correspond to conditions where either species can become established v'vt_1en
alone, but where sensitive and resistent species, respectively, prevail in competxpon
with one another. Coexistence is possible only along the boundary between regions
IV and V. Any deviation in the influx concentration of inhibitor, however §light,
from the critical value given by eqn (6a) destroys this equilibrium. Therefore, without
detoxification, the equilibrium specifying coexistence of sensitive and resistant
species is structurally unstable.

COEXISTENCE AND STABILITY WITH DETOXIFICATION

Let us now assume that the resistant species detoxifies the inhibitor, and con§ider
the conditions for stable coexistence of sensitive and resistant species on a single
resource. As was the case without detoxification, the per capita growth rates of
sensitive and resistant populations must be identical, and equal to the flow rate, at




COEXISTENCE ON RESOURCE AND INHIBITOR 87

equilibrium. Once again, this implies that the equilibrium concentration of inhibitor
must be equal to the critical value given by eqn (6a). However, the influx concentra-
tion of inhibitor need not be equal to that critical value. That is, detoxification by
the resistant species reduces the concentration of inhibitor below its influx concentra-
tion, so eqn (6b) no longer holds. The sensitive species thus experiences a reduced
concentration of inhibitor, as well as of resource, in the presence of the resistant
species.

We have already obtained the equilibrium concentration of resource, such that
the rates of growth and washout in the resistant population are exactly equal (eqn
(5)). We have also already obtained the equilibrium concentration of inhibitor,
which yields an identical per capita rate of growth for the sensitive population (eqn.
(6a)). Because the detoxification parameter is now greater than zero, one can set
eqn (4) to zero, and thereby obtain the equilibrium density of the resistant competitor

;é:w(xo—X)%(i. )
From eqn (1), one can then solve the equilibrium density of the sensitive competitor

consistent with the other equilibrium values
S*, _ Co C ERR (9)

€s

Note that the equilibrium densities of sensitive and resistant populations still satisfy
the relationship in eqn (7). The density of the resistant species can thus be interpreted
as that fraction of the combined density that provides just the rate of detoxification
necessary to reduce the influx of inhibitor to its critical equilibrium concentration.

Having derived the equilibrium densities for the sensitive and resistant popula-
tions, we can now examine the conditions permitting their coexistence. Note first
that the presence of a sensitive population in no way benefits the resistant population,
which simply experiences a reduced availability of resource. In contrast, the sensitive
species experiences a reduced concentration of inhibitor, as well as of resource, in
the preserice of the resistant population. This implies that the conditions for
coexistence with detoxification must be a subset of the conditions where the resistant
species prevails without detoxification.

Recall that the equilibrium concentration of resource from eqn (5) obtains whether
or not the sensitive population is present. The equilibrium density of the resistant
population when alone thus equals the total resource equivalent density in egn (7).
For the sensitive species to invade a resistant population at equilibrium, the resistant
population must reduce the influx inhibitor concentration below the critical equili-
brium value given by eqn (6a). This condition is met when the influx concentrations
of resource and inhibitor satisfy the following inequality

Co-C s X
£x X+L

> (Xo—X)w. (10)

In Fig. 1(b), we have graphed the possible equilibrium outcomes as a function
of the influx concentrations of resource and inhibitor, for the same parameters as
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in Fig. 1(a), except that the resistant population now detoxifies the inhibitor. Region
VI includes those conditions where either species could establish alone, and where
there exists an-equilibrium specifying coexistence of the two species. It is a subset
of region V in Fig. 1(a), wherein the resistant species would competitively exclude
the sensitive species without detoxification. (For the parameter values used to
generate Fig. 1, region V1 in frame b completely overlaps region V in frame a. With
other parameter values, region V1 may overlap only a portion of region V.) Region
VII also includes conditions where sensitive and resistant populations can coexist,
but where the sensitive species cannot become established unless the resistant species
is already present; it is a subset of region I11 in Fig. 1{a). Region VII thus corresponds
to obligatory succession, wherein one species requires another to favorably modify
the environment and thus facilitate its invasion (Horn, 1981).

It should be noted that the equilibrium concentrations of resource and inhibitor
are independent of their concentrations as they enter the habitat, whenever the
resistant and sensitive species can coexist (regions VI and VII). These equilibrium
concentrations appear graphically as the point intersection of all the boundaries
between regions.

Let us now examine the stability properties of the model in the neighbourhood
of the equilibrium specifying coexistence of the sensitive and resistant species. We
present each of the elements of the community matrix associated with eqns (1)-(4)
in the appendix. We indicate the signs of these elements in Fig. 2, using the notation

F1G. 2. Loop diagram of the community with sensitive (S) and resistant (R) speci?s coc)l(istir}g on
one resource {C) and one inhibitor {X). Lines with arrows indicate positive effects; lines with Cer!cS
indicate negative effects; no lines indicate zero effects. Signs of effects are determined from the community
matrix that is given in the Appendix. The negative effect of R on X becomes zero if there is no

detoxification of the externally derived inhibitor by the resistant species; it becomes positive if the
resistant species produces the inhibitor.

of Levins (1975). Any equilibrium of interest is stable if and only if all of the
eigenvalues of the community matrix have negative real parts when evaluated at
that equilibrium (May, 1974; Levins, 1975). The equation for the eigenvalues is a
polynomial, and the Routh-Hurwitz theorem specifies the relationships between
the coefficients of the polynomial that ensure that all eigenvalues have negative real
parts. Without belaboring the mathematical complexities associated with determin-
ing whether or not these relationships are satisfied, two distinct criteria must be met.
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The first criterion for stability requires that net feedbacks at all levels must be
negative. In the Appendix, we show that net feedbacks of length 1 to 3 are negative,
whether or not the resistant species detoxifies the inhibitor. The critical condition
for stability is found at level 4. Without detoxification, the effect of R on X in Fig.
2 becomes zero; no loops of length 4 are possible, nor are there any disjunct loops
of combined length 4. Hence, the net feedback at level 4 is zero without detoxification,
violating the criterion that net feedbacks at all levels must be negative for neighbour-
hood stability. The zero feedback does, however, indicate a zero real part for one
of the eigenvalues of the community matrix, and this in turn implies an equilibrium
with structural instability. In fact, we computed a critical influx concentration of
inhibitor that was necessary to yield an exact equivalence in the growth rates of the
sensitive and resistant species (eqns 6(a) and 6(b)). Without detoxification, any
deviation in this parameter, however slight, would necessarily provide a growth
advantage to one species or the other, and thus destroy the equilibrium.

If there is detoxification of the inhibitor by the resistant species, we have a single
loop of length 4 (CRXS), and the product of the signs along this loop is negative.
The stabilizing effect of detoxification can be seen intuitively by imagining a perturba-
tion of the following sort. If the density of the sensitive competitor is reduced then
its use of resource declines, thereby leading to an increase in resource concentration.
This in turn stimulates the growth of the resistant population, resulting in a higher
rate of detoxification of the inhibitor. As a consequence of the reduced concentration
of inhibitor, the sensitive population experiences an increased growth rate, thereby
opposing the effect of the original perturbation.

Detoxification thus produces a negative feedback that is necessary for stable
coexistence of the sensitive and resistant species. This conclusion is robust, and
depends only on the signs of the elements of the community matrix. It is therefore
not dependent on the exact form of the functions used in eqns (1)-(4) to describe
the processes of resource utilization, population growth, growth inhibition, and
inhibitor detoxification.

The second criterion for stability specifies that the magnitudes of the feedbacks
must be such that longer feedbacks do not overwhelm shorter feedbacks. Its violation
is analogous to the introduction of a time delay into one or more of the differential
equations. In the Appendix, we show that this criterion may be violated by reducing
the responsiveness of the growth rate of the sensitive species to the resource
concentration; or by reducing the responsiveness of the detoxification rate of the
resistant species to the inhibitor concentration. These changes, in effect, remove
constraints that generally limit the rates of biological processes when substrates are
at low concentration, and should be considered unlikely. In summary, detoxification
is necessary for (but does not ensure) the stable coexistence of sensitive and resistant
species on one resource and one inhibitor (both externally derived) in a homogeneous
environment.

Discussion

As noted by Williamson (1972), commensalistic interactions between species have
received insufficient consideration in ecological theory. One type of commensalism
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is detoxification of an inhibitor, which we have shown can stabilize an otherwise
unstable competitive interaction. Detoxification of externally derived inhibitors,
including pollutants, may be very important in nature, especially in microbial
communities (Bull & Slater, 1982). Resistance by bacteria to antibiotics and heavy
metals, for example, frequently resulits from the acquisition of an extrachromosomal
element, or plasmid, that encodes an enzyme which converts the inhibitor into a
less toxic form (Foster, 1983).

The antibiotic chloramphenicol is detoxified by its enzymatic acetylation. This
reduces the intracellular concentration of chloramphenicol, and therby enables the
survival of bacteria that produce the enzyme. [t also results in a significant decline
in the concentration of the antibiotic in the environment (Lundback & Nordstrom,
1974). Hattingh (1986) has shown that carriage by Escherichia coli of a non-self-
transmissable plasmid encoding this detoxification activity engenders a pleiotropic
reduction in competitive ability; in the absence of chloramphenicol, plasmid-bearing
cells decline rapidly in frequency when allowed to compete with plasmid-free cells
in chemostat culture. Hattingh (1986) further demonstrated that plasmid-free cells
could invade a chemostat with an influx of 2-5 ug per ml of chloramphenicol only
if plasmid-bearing cells were already established. With no antibiotic in the culture
medium, plasmid-free cells could invade whether or not plasmid-bearing cells were
present. These experimental results confirm the critical features of the model presen-
ted in this paper.

Hansen & Hubbell {1980) examined competition between E. coli strains sensitive
and resistant to another antibiotic, nalidixic acid. In this case, however, resistance
was due to a chromosomal mutation that renders the strain insensitive to the effects
of nalidixic acid, but does not result in detoxification of the antibiotic. Hansen &
Hubbell (1980) demonstrated that the sensitive and resistant strains could coexist
only if the influx concentration of nalidixic acid (0-5 pg per ml) was chosen to yield
an exact equivalency in the *“‘break-even” concentration of the limiting resource for
the two strains. This result illustrates their contention that resource-based competi-
tion theory is preferable to classical competition theory. It is also consistent with
our contention that coexistence of two competitors on one resource and one exter-
nally derived inhibitor is structurally unstable, unless the resistant species removes
the inhibitor from the environment.

DETOXIFICATION VERSUS ALLELOPATHY

In our model, we have assumed that the inhibitor is derived from an external
source. We now briefly constrast the situation in which the inhibitor is an allelopathic
substance, produced by the resistant species. This is one of several cases involving
in situ production of inhibitors that have been considered theoretically by DeFreitas
& Fredrickson (1978). We can readily alter our loop diagram for the detoxification
model (Fig. 2) to incorporate this allelopathy. The negative effect of the resistant
species on the inhibitor becomes positive, and the feedback along the loop CRXS is
also positive. Because there are no other feedbacks at this level, coexistence is
necessarily unstable. The destabilizing effect of allelopathy can be seen intuitively
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by imagining the following perturbation. A reduction in the density of the sensitive
competitor leads to an increase in resource concentration. This stimulates the growth
of the resistant population, resulting in an increase in the concentration of the
allelopathic substance. As a consequence, the sensitive population experiences a
reduced growth rate, thus exacerbating its original decline.

Once again, experimental communities of bacteria provide a confirmation of this
theoretical prediction. Several studies have examined competition between two
strains of E. coli, where one produced a toxin to which it was resistant and its
competitor was sensitive (Zamenhof & Zamenhof, 1971; Adams ef al., 1979; Chao
& Levin, 1981). Each demonstrated that the allelopathic strain could increase only
when it was above a certain initial frequency in the community; it declined whenever
it was below that frequency, thus indicating an unstable equilibrium.

The inability of the allelopathic strain to increase when rare, though consistent
with ecological theory, appears problematic from an evolutionary perspective. How
can allelopathy become established if it is selectively disadvantageous when rare?
Chao & Levin (1981) suggested a resolution to this paradox by demonstrating that
the allelopathic strain had an advantage even when rare if the competitors interacted
not in liquid culture, but on the surfaces of agar plates. The explanation for this
result is that on surfaces bacteria exist as discrete colonies. Allelopathic colonies
kill neighboring sensitive colonies and thus sequester local resources. In contrast,
any resource made available by the action of inhibitor in liquid culture is distributed
randomly by the laws of mass action, and is thus equally available to sensitive and
resistant cells.

In contrast to the allelopathic trait considered by Chao & Levin (1981), there is
no difficulty in identifying ecological conditions in which the detoxification trait
could increase when rare, even in liquid culture. Of course, the effect of antibiotic
detoxification, like that of allelopathy, could be locally amplified in a structured
habitat, perhaps limiting opportunities for coexistence of sensitive organisms.
However, detoxification of the extracellular environment is probably not an adapta-
tion per se, but rather a consequence of the on-going detoxification of the intraceilular
environment.

We wish to thank Lin Chao, Sandy Collins, Ralph Evans, Bruce Levin, Frank Stewart,
and Richard Vance for their critical comments on this manuscript. NIH grant GM33782 to
Bruce Levin provided support for this project.

REFERENCES

ABRAMS, P. (1983). Ann. Rev. Ecol. Syst. 14, 359.

ADAMS, J., KINNEY, T., THOMPSON, S., RUBIN, L. & HELLING, R. B. (1979). Genetics 91, 627.

ARMSTRONG, R. A. & MCGEHEE, R. (1980). Am. Nat. 115, 151.

BuULL, A. T. & SLATER, J. H. (1982). In: Microbial Interactions and Communities. (Bull, A. T. & Slater,
J. H. eds). London: Academic Press.

CHAO, L. & LEVIN, B. R. (1981). Proc. natn. Acad. Sci. U.S.A. 78, 6324.

DEFREITAS, M. J. & FREDRICKSON, A. G. (1978). J. gen. Microbiol 106, 307.

FOSTER, T. J. (1983). Microbiol Rev. 47, 361.

FREDRICKSON, A. G. & STEPHANOPOULOS, G. (1981). Science 213, 972.

HANSEN, S, R. & HUBBELL, S. P. (1980). Science 207, 1491.

HATTINGH, S. E. (1986). M. S. thesis, Univ. of Massachusetts, Amherst,

92 R. E. LENSKL AND S. E. HATTINGH

HoRN, H. S. (1981). In: Theoretical Ecology (May, R. M. ed.). Oxford: Blackwell Scientific.

Hsu, S. B., HUBBELL, §. P. & WALTMAN, P. A. (1977). SIAM J. Appl. Math. 32, 366.

KUBITSCHEK, H. E. (1970). Introduction to Research with Continuous Cultures. Englewood Cliffs, New
Jersey: Prentice-Hall.

LEVIN, B. R,, STEWART, F. M. & CHAO, L. (1977). Am. Nat. 111, 3.

LEVIN, S. A. (1970). Am. Nat. 104, 413.

LeviNs, R. (1975). In: Ecology and Evolution of Communities (Cody, M. L. & Diamond, J. M. eds).
Cambridge, Massachusetts: Belknap Press. .

LEvINS, R. (1979). Am. Nat. 114, 765.

LUNDBACK, A. & NORDSTROM, K. (1974). Antimicrob. Agents Chemoth. §, 492.

May, R. M. (1974). Stability and Complexity in Model Ecosystems. Princeton, New Jersey: Princeton
University Press.

SCHOENER, T. W. (1978). Theor. Pop. Biol. 10, 309.

STEWART, F. M. & LEvINn, B. R. (1973). Am. Nat. 107, 171.

TiLMan, D. (1982). Resource Competition and Community Structure. Princeton, New Jersey: Princeton
University Press.

VANCE, R. R. (1985). Am. Nac. 126, 72.

WALTMAN, P. (1983). Competition Models in Population Biolagy. Philadelphia, Pennsylvania: Society
for Industrial and Applied Mathematics.

WILLIAMSON, M. (1972). The Analysis of Biological Populations. London: Edward Arald.

ZAMENHOF, S. & ZAMENHOF, P. J. (1971). In: Recent Advances in Microbiology (Perez-Miravete, A.
& Palaez, D. eds). Mexico: Asociacion Mexicana de Microbiologia.

APPENDIX

The following partial differential equations define the elements of the community
matrix for the model presented in eqns (1)-(4).

3C/9C = —w[1+ 58K/ (C?+ CKy) + e RKn / (E2+ CKR)]
3C/38 = ~wes

6C/aR = —weg

6C"/6X=wes/\§

38/3C = wS8K¢/(C?*+ CKy)

35/aS=0
3S/6R =0
387X = —wAS
dR/3C = wRKo/(C*+ CKy)
3R/3S=0
dR/IR =0
dR/3X =0
8X/3C =0
8X /a8 =0

3X/aR =-8X/(X+L)
3X/X =—w—8RL/(X + L)
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Although non-zero terms appear in 3$/3S and 3R/3R, they cancel by virtue of the
derivations for € and X (eqns. (5) and (6a)). The signs of these elements are robust,
and not dependent on the exact form of the functions used to describe the processes
of resource utilization, population growth, growth inhibition, and inhibitor
detoxification. These signs are shown schematically in Fig. 2.

Net feedbacks at each level are computed according to Levins (1975). f; is the
sum of the products along all loops of length i plus the sum of the products along
all disjunct loops whose combined length is i The sign of a product of disjunct
loops is adjusted so as to be negative if the products along all of the constituent
loops are negative. Negative net feedbacks at all levels are necessary (but not
sufficient) for stability.

fLi=6C/aC)+(3X[3X)

£,=(3C/35)(38/4C) +(3C/aR)(8R/3C) ~ (3C/3C)(3X /3 X)

£=@C/aX)@R/3C)@X/3R) - (38X /3X)(3C/35)(38/3C)
~(aX /9X)(3C/aR)NaR/C)

£:=0C/385)8R/3C)aX/3R)(3S/3X).

Net feedbacks at levels 1 to 3 are negative, whether or not the resistant species
detoxifies the inhibitor. Feedback at level 4 is also negative if the resistant species
detoxifies the inhibitor, but is zero without detoxification.

Even if net feedbacks at all levels are negative, an equilibrium may be unstable
if longer feedbacks overwhelm shorter feedbacks. The Routh~Hurwitz theorem
specifies the relationships between net feedbacks at different levels that are necessary
for stability (Levins, 1975). When there are 4 levels of feedback, the following
inequality must hold (May, 1974, p. 196):

aya,a,> a§ + afaA

where each g, = —f.. Conditions that violate this inequality can be found by decreasing
the magnitudes of elements contributing to f; and f; (but not f; and f;) or by
increasing the magnitudes of those elements contributing to f; and f; (but not f;
and f>). This can be accomplished in two different ways. First, lowering K decreases
the importance of resource-mediated effects, which dominate the shorter feedbacks.
Setting K5 =0, Co=20, X,=2-5, and all other parameters as in Fig. 1(b), violates
the Routh-Hurwitz criterion, but the non-trivial equilibrium persists. Second, lower-
ing L while raising A increases the importance of inhibitor-mediated effects, which
dominate longer feedbacks. With L=0, A =10, C4=20, X;,=2-5, and all other
parameters as in Fig. 1(b), the Routh-Hurwitz criterion is also violated, although
the non-trivial equilibrium is again preserved.






